185 research outputs found

    Molecular mechanisms for the destabilization and restabilization of reactivated spatial memory in the Morris water maze

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Memory retrieval is not a passive process. Recent studies have shown that reactivated memory is destabilized and then restabilized through gene expression-dependent reconsolidation. Molecular studies on the regulation of memory stability after retrieval have focused almost exclusively on fear memory, especially on the restabilization process of the reactivated fear memory. We previously showed that, similarly with fear memories, reactivated spatial memory undergoes reconsolidation in the Morris water maze. However, the underlying molecular mechanisms by which reactivated spatial memory is destabilized and restabilized remain poorly understood. In this study, we investigated the molecular mechanism that regulates the stability of the reactivated spatial memory.</p> <p>Results</p> <p>We first showed that pharmacological inactivation of the N-methyl-D-aspartate glutamate receptor (NMDAR) in the hippocampus or genetic inhibition of cAMP-responsible element binding protein (CREB)-mediated transcription disrupted reactivated spatial memory. Finally, we showed that pharmacological inhibition of cannabinoid receptor 1 (CB1) and L-type voltage gated calcium channels (LVGCCs) in the hippocampus blocked the disruption of the reactivated spatial memory by the inhibition of protein synthesis.</p> <p>Conclusions</p> <p>Our findings indicated that the reactivated spatial memory is destabilized through the activation of CB1 and LVGCCs and then restabilized through the activation of NMDAR- and CREB-mediated transcription. We also suggest that the reactivated spatial memory undergoes destabilization and restabilization in the hippocampus, through similar molecular processes as those for reactivated contextual fear memories, which require CB1 and LVGCCs for destabilization and NMDAR and CREB for restabilization.</p

    Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation.</p> <p>Results</p> <p>To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA) by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL) and infralimbic (IL) regions) and Arc expression in the anterior cingulate cortex (ACC). We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory.</p> <p>Conclusion</p> <p>Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.</p

    CaMKIV over-expression boosts cortical 4-7 Hz oscillations during learning and 1-4 Hz delta oscillations during sleep

    Get PDF
    Mounting evidence suggests that neural oscillations are related to the learning and consolidation of newly formed memory in the mammalian brain. Four to seven Hertz (4-7 Hz) oscillations in the prefrontal cortex are also postulated to be involved in learning and attention processes. Additionally, slow delta oscillations (1-4 Hz) have been proposed to be involved in memory consolidation or even synaptic down scaling during sleep. The molecular mechanisms which link learning-related oscillations during wakefulness to sleep-related oscillations remain unknown. We show that increasing the expression of calcium/calmodulin dependent protein kinase IV (CaMKIV), a key nucleic protein kinase, selectively enhances 4-7.5 Hz oscillation power during trace fear learning and slow delta oscillations during subsequent sleep. These oscillations were found to be boosted in response to the trace fear paradigm and are likely to be localized to regions of the prefrontal cortex. Correlation analyses demonstrate that a proportion of the variance in 4-7.5 Hz oscillations, during fear conditioning, could account for some degree of learning and subsequent memory formation, while changes in slow delta power did not share this predictive strength. Our data emphasize the role of CaMKIV in controlling learning and sleep-related oscillations and suggest that oscillatory activity during wakefulness may be a relevant predictor of subsequent memory consolidation

    Activin in the Brain Modulates Anxiety-Related Behavior and Adult Neurogenesis

    Get PDF
    Activin, a member of the transforming growth factor-β superfamily, is an endocrine hormone that regulates differentiation and proliferation of a wide variety of cells. In the brain, activin protects neurons from ischemic damage. In this study, we demonstrate that activin modulates anxiety-related behavior by analyzing ACM4 and FSM transgenic mice in which activin and follistatin (which antagonizes the activin signal), respectively, were overexpressed in a forebrain-specific manner under the control of the αCaMKII promoter. Behavioral analyses revealed that FSM mice exhibited enhanced anxiety compared to wild-type littermates, while ACM4 mice showed reduced anxiety. Importantly, survival of newly formed neurons in the subgranular zone of adult hippocampus was significantly decreased in FSM mice, which was partially rescued in ACM4/FSM double transgenic mice. Our findings demonstrate that the level of activin in the adult brain bi-directionally influences anxiety-related behavior. These results further suggest that decreases in postnatal neurogenesis caused by activin inhibition affect an anxiety-related behavior in adulthood. Activin and its signaling pathway may represent novel therapeutic targets for anxiety disorder as well as ischemic brain injury

    Calcium/calmodulin-dependent kinase IV contributes to translation-dependent early synaptic potentiation in the anterior cingulate cortex of adult mice

    Get PDF
    Calcium/calmodulin-dependent kinase IV (CaMKIV) phosphorylates the major transcription factor, cyclic AMP-responsive element binding protein (CREB), which plays key roles in synaptic plasticity and memory consolidation. Our previous study showed that long-term potentiation (LTP) in the anterior cingulate cortex (ACC) was significantly enhanced in transgenic mice overexpressing CaMKIV. Considering that the CaMKIV-CREB pathway plays a central role in the protein synthesis-dependent LTP, it is possible that upregulation of CaMKIV contributes to enhancement of LTP by promoting protein synthesis. To test this possibility, we examined the effects of transcription and translation inhibitors on synaptic potentiation induced by pairing of synaptic activity with postsynaptic depolarization (paired training) in ACC pyramidal neurons of wild-type and CaMKIV transgenic mice. We found that synaptic potentiation induced by paired training was partially inhibited by transcription or translation inhibitors both in wild-type and CaMKIV transgenic mice; the extent of inhibition was markedly larger in the CaMKIV transgenic mice than in the wild-type mice. Biochemical and immunohistochemical studies revealed that CaMKIV was distributed in the membrane, cytosol and nucleus of ACC neurons. Our results reveal in the first time a transcription- and translation-dependent component of early synaptic LTP in adult ACC synapses, and demonstrate that CaMKIV enhances early synaptic potentiation by activating new protein synthesis

    Cone-beam CT reconstruction for non-periodic organ motion using time-ordered chain graph model

    Get PDF
    Purpose: The purpose of this study is to introduce the new concept of a four-dimensional (4D) cone-beam computed tomography (CBCT) reconstruction approach for non-periodic organ motion in cooperation with the time-ordered chain graph model (TCGM) and to compare it with previously developed methods such as total variation-based compressed sensing (TVCS) and prior-image constrained compressed sensing (PICCS). Materials and Methods: Our proposed reconstruction is based on a model including the constraint originating from the images of neighboring time phases. Namely, the reconstructed time-series images depend on each other in this TCGM scheme, and the time-ordered images are concurrently reconstructed in the iterative reconstruction approach. In this study, iterative reconstruction with the TCGM was carried out with 90◦ projection ranges. The images reconstructed by the TCGM were compared with the images reconstructed by TVCS (200◦ projection ranges) and PICCS (90◦ projection ranges). Two kinds of projection data sets–an elliptic-cylindrical digital phantom and two clinical patients’ data–were used. For the digital phantom, an air sphere was contained and virtually moved along the longitudinal axis by 3 cm/30 s and 3 cm/60 s; the temporal resolution was evaluated by measuring the penumbral width of the air sphere. The clinical feasibility of the non-periodic time-ordered 4D CBCT image reconstruction was examined with the patient data in the pelvic region. Results: In the evaluation of the digital-phantom reconstruction, the penumbral widths of the TCGM yielded the narrowest result; the results obtained by PICCS and TCGM using 90◦ projection ranges were 2.8% and 18.2% for 3 cm/30 s, and 5.0% and 23.1% for 3 cm/60 s narrower than that of TVCS using 200◦ projection ranges. This suggests that the TCGM has a better temporal resolution, whereas PICCS seems similar to TVCS. These reconstruction methods were also compared using patients’ projection data sets. Although all three reconstruction results showed motion related to rectal gas or stool, the result obtained by the TCGM was visibly clearer with less blurring. Conclusion: The TCGM is a feasible approach to visualize non-periodic organ motion. The digital-phantom results demonstrated that the proposed method provides 4D image series with a better temporal resolution compared to TVCS and PICCS. The clinical patients’ results also showed that the present method enables us to visualize motion related to rectal gas and flatus in the rectum

    Quantum gapped state in a spin-1/2 distorted honeycomb-based lattice with frustration

    Full text link
    We successfully synthesized (pp-Py-V)[Cu(hfac)2_2], a verdazyl-based complex. Molecular orbital calculations revealed five types of intermolecular interactions between the radical spins and two types of intramolecular interactions between the radical and the Cu spins, resulting in a spin-1/2 distorted honeycomb-based lattice. Additionally, competing ferromagnetic and antiferromagnetic (AF) interactions induce frustration. The magnetization curve displayed a multistage increase, including a zero-field energy gap. Considering the stronger AF interactions that form dimers and tetramers, the magnetic susceptibility and magnetization curves were qualitatively explained. These findings demonstrated that the quantum state, based on the dominant AF interactions, was stabilized due to the effects of frustration in the lattice. Hence, the exchange interactions forming two-dimensional couplings decoupled, reducing energy loss caused by frustration and leading to frustration-induced dimensional reduction.Comment: 6 pages, 5 figure
    corecore